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Low-speed two-dimensional free-surface flow 
past a body 

By S. L. COLE AND T. D. STRAYER 
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, 

NY 12180-3690, USA 

(Received 27 September 1991) 

This paper defines the linearized problem of free-surface flow past a shallow two- 
dimensional body in terms of complex variables and provides an asymptotic solution 
for the Froude number tending to zero. The simple case of flow past a rectangular box 
with a triangular extension in front is worked out as an example. The low-Froude- 
number solution for ‘double-body ’ flow in a fully infinite fluid past the same box with 
its reflection in the upper half-plane is also calculated. The upstream free-surface 
height for the linear solution is compared to the equivalent free-surface height for the 
double-body flow. Experimental results for this body are also presented and 
compared, 

1. Motivation 
Experiments were performed with a rectangular box towed in a tank 24.5 m long 

and 1.2 m wide with an average water depth of approximately 1.0 m. The box was 
submerged approximately 12 cm and had a clearance of approximately 4 cm between 
the box ends and the tank wall. The 4 cm clearance allowed surface contaminants to 
drain around the edges. Waves generated upstream of the towed box were nearly 
two-dimensional except close to the sidewalls. Wave profiles were measured using a 
capacitance type wave gauge positioned at the midpoint of the tank to avoid 
interference with reflected waves and to avoid surface contaminants that tended to 
build up near the endwalls. It was observed experimentally that the potential flow 
upstream of the towed box separated away from the free surface, passing under and 
driving a nearly triangular-shaped vortical flow region as depicted in figure 1. (A 
more complete description of the experimental set-up and a simple model and 
numerical calculation of the flow in the vortical region is given in Cole & Strayer 
1991.) Unsteady waves were shed from the bow. However, for moderately high 
Froude numbers these waves were attenuated in the vortical flow region and the 
upstream potential flow appeared very similar to the double-body flow past an 
infinite box with a triangular extension in front from a few draught lengths out in 
front of the box. Double-body flow does not predict downstream waves or their 
accompanying drag. Yet, downstream waves exist. It was conjectured that the 
potential flow could perhaps be modelled as a solution to the linearized problem of 
flow past a shallow box with a triangular extension in front since linearized theory 
predicts waves downstream. Does it also mimic the double-body upstream for small 
Froude number ? The purpose of this paper is to address this question. 
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Vortical flow region 
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FIGURE 1. Observed free-surface flow past a towed rectangular box. 

2. Problem formulation 

variables are 
The two-dimensional equations of potential flow past an object in dimensional 

) (1) 

@&* + @;*,* = 0, 
0;. = @z*E$ on z* = E*(z*), 

P*/p*+;(@::+@;:)+g*z* = g J * 2  on z* = E*(z*), 

where @* is the velocity potential, P* is the pressure taken to be zero along the free 
surface, p* is the density, g* is the gravitational acceleration, &* is the surfwe height 
with z* = t* = d*f along the body and where d* is the draught and f is the body 
shape. The coordinate frame is fixed relative to the body so there is a uniform flow 
with velocity, U*, heading toward the object from upstream infinity. @*, E* and their 
derivatives are assumed to decay as z* tends to upstream infinity or z* tends to 
negative infinity. The body has length 2L*. 

In order to solve the linear approximation based on the assumption that the 
body’s draught is much smaller than its length, (1) are cast in non-dimensional form 
by scaling according to the half-length, L*, and the velocity, U*. Substituting 

(2) 
X* z = -  z* (=- E* d*f p=- P* 

p*g*L* L*’ .f =- L* ’ L* ’ 2=-, 
@=-  @* 

U*L* ’ L* 

(3) 

into (1) gives 
GZZ + a,, = 0, 

@,= @ztz on z = f ,  

P+pi(@i+@,2)+z =pi on x = 6, 
where f = Ef on the body. The non-dimensional parameters are E = d*/L*, a measure 
of the shallowness of the body, and FL, the Froude number based on the half-length 
of the body; F i  = U*”(g*L*). 

Since linear theory is based on the assumption that the body’s draught is much 
smaller than its length, E is assumed to be much smaller than 1 and (3) can be 
linearized using the perturbation expansions 

to give 
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with r ]  = f along the body and 4, r] and their derivatives tending to zero as x tends 
to upstream infinity or z tends to negative infinity. Equations (5)  are the linearized 
equations for potential flow past a shallow object. This is a mixed boundary-value 
problem where the flow is tangent to the body along the object but satisfies free- 
surface conditions off the body. Thus, even though (5 )  define a linear problem, they 
are difficult to solve for arbitrary values of FL. 

We wish to compare the linear and experimental results with the double-body 
solution for a finite and a semi-infinite body and, therefore, scale (1) to define the 
double-body problem using the draught, d*, and the velocity, U*. Substituting 

with = f along the body and where Fa is the Froude number based on the draught 
of the body; F: = U**/(g*d*). Note that 8 depends on the parameter l/s since the 
length of the body has been scaled by d*. 

In the double-body approximation, Fa is assumed to be much smaller than 1 and 
the parameter l/s is assumed to be of order 1. Then (7) can be simplified using the 
perturbation expansions 

to yield 

I ( 5 ,  z”; Fa, l/s) = &P, z“; I/€) + . . . , 
&;Fa, 1/e) = Fif(5; l/e)+ ... 

& = t o  on z ” = O  and Zoffthebody, 
& =  &fz on z”= f and Ponthebody, 

f=$[l-&] on Z = O  and Poffthebody, I $23 + &z = 0, 

where 6, f and their derivatives tend to zero as P tends to upstream infinity or z“ tends 
to negative infinity. Equations (9) are the double-body equations for low-Froude- 
number potential flow. Note that these equations are also linear; however, they are 
substantially simpler to solve than the shallow-draught problem as (9) do not 
represent a mixed boundary-value problem. We wish to compare the solution of the 
linearized problem, (5 ) ,  in the limit as F L  tends to zero with the solution of the double- 
body problem, (9), in the limit as the draught-to-length ratio, 6, tends to zero. 

3. Linear problem 
Following ideas similar to those of Keldysh (1939) and Sedov (1965) for two- 

dimensional planing theory, the linear problem can be recast in terms of complex 
variables as follows. Let 4 be the real part of an analytic function 0 of the complex 
variable 5 = x+ iz. Then 4 automatically satisfies Laplace’s equation. Following the 
ideas of Cole (1988) for three-dimensional flat-ship theory, let p(x) be the real part of 
the analytic function Z7evaluated at z = 0. Differentiating ( 5 c )  with respect to x and 
substituting ( 5 b )  implies the surface terms of the linear problem, (5 ) ,  are equivalent 
to 

Re{Z7c+F~Gcc+iQc) = 0 on z = 0 (1Oa) 
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with ImG,=-f, for z = O  and xonthe body. (10b)  

Re{l7+FiGc+iC} = 0 on z = 0 (1 1 4  

Im G = - f on the body. ( 1 l b )  

Equation (10a) can be integrated once to yield 

since p = 0 on the free surface and qi and its derivatives tend to zero as 
upstream infinity. Equation (lob) is equivalent to 

tends to 

The solution of problem (11) can be motivated as follows. Equation ( l l a )  will be 
satisfied if I7 and G satisfy 

l7+FiG,+iG = 0 (12) 
everywhere. We are free to choose a series solution for either G or l7 and solve (12) 
for the other function. The series solutions, however, must ensure that Re {m = 0 on 
z = 0 off the body and that Fi G,+ iG satisfies the correct decay behaviour as f; tends 
to infinity. This can be done by a judicious choice for l7. There are two cases in which 
(11) can be solved easily, Fi %- 1 and Fi < 1. 

3.1. The case F i  b 1 
The high-Froude-number case, F i  B 1, is presented here because it serves as a model 
for the solution of the low-Froude-number case and because important differences 
arise between the two. The high-Froude-number case was solved by Sedov (1965) 
using numerical methods. In  a very similar way, an asymptotic solution can be found 
for a body centred about x = 0 by expanding 17 as 

for the constants, a,,, real and the branch cut chosen so that l7 tends to zero as 6 tends 
to infinity. This implies p = Re I7 = 0 for z = 0 and 1x1 > 1 and that F; Gc + iG = - lT 
has the correct decay behaviour as 5 tends t o  infinity as argued in Sedov (1965). 
Then, from (12) 

This is just an ordinary differential equation in 5 which can be solved to yield 

An integration by parts of (15) shows that for Fi %- 1 

A Fourier series representation can be obtained by substituting 5 = x = cos 8, along 
the body with (S- 1); = -isin8, into (16) to yield 

i O3 sinn8 
ImG, - ---an- , FI-+a, Fin-1 -isin8' 

o body 

Expanding f, = zzm0 bm cosmf3 and setting Im G, = - fi from (lob) on the body 
yields 

(18) 
a, a, 

-FE E bmcosm8sin8 = C ansinn8, 
m-0 n-1 
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which defines the a, for n 5 1,2 ,  , . , . The solution for G is not unique, however, until 
a, is specified. Sedov imposes the boundary condition that the high-speed flow leaves 
the trailing edge smoothly. Thus the free constant a, must be chosen so that 
Z$oan = 0. This ensures that there is no singularity along the trailing edge. This 
leading-order problem is the same as that of lifting two-dimensional wing theory. 
The interpretation of the solutions is different, however. The identical solution in the 
semi-infinite fluid case of ship wave theory produces a spray drag at the leading edge 
(see Cole 1988) while in the fully infinite-fluid case of thin-wing theory, i t  produces 
a leading-edge thrust (see Jonee 1990). 

The method just presented can be continued relatively easily to calculate the next 
term in an asymptotic expansion for q5 as F i  tends to infinity. It will not be done 
here, however, as it is necessary only to understand the behaviour of the first term 
when we consider the low-Froude-number limit. 

3.2. The erne Fi < 1 
The solution for the low-Froude-number case cannot be found using (13) for 17as will 
be explained below but can be constructed instead from the expansion 

Equation (12) then implies 
00 

FiG,+iG = -i C an([-(c-i)$n, 
n-1 

which can be solved to yield 

(21) 
1 G = --e-'UFi an(t-((t2-1)t)ndt. 

FZ 
On the free surface the real parts of the terms FL G, and iG must be the same size since 
they sum to zero. On the body, however, derivatives of G are not expected to be large 
(except possibly near the leading or trailing edges). Thus, on the body Fi G, < iG and 
(20) implies 

ImGI,-o - Re (22) 
IZldl  F L + O  

Substituting [ = x = cose on z = 0 for 1x1 < 1 into (12b) and (22) yields 
m m 

n-1 n-1 

ansinno - f(e) = fnsinne, 

which determines all of the a, uniquely once f is expanded in a sine series in 8. Note 
that unlike the high-speed theory, there is no free constant available to enable the 
flow solution to leave the trailing edge smoothly. Thus, the boundary conditions for 
the low- and high-Froude-number cases are different. Unlike high-Froude-number 
theory, the leading-order problem for the low-Froude-number case in ship wave 
theory does not correspond to any simple two-dimensional airfoil problem. The 
assumption that F i  G, < iG on the body but away from C = 1 is easily verified from 
(21) and (23). It is now apparent why an expansion for 17 of the form (13) could not 
be used in the low-Froude-number case. From (12) we see that the form of 17 defines 
the singular behaviour of G, for the high-Froude-number case and G for the low- 
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Froude-number case. In order for (IC to have at most a square-root singularity at the 
body's edges, I7 cannot have an expansion of the form (13) in the low-Froude-number 
cme since that would give rise to a solution for G and thus G, when G is differentiated, 
which is too singular. 

Equations (21) and (23) define a remarkably simple solution for the leading-order 
term in the low-Froude-number case. Unlike the high-speed case though, it is not 
easy to generate the next term in an asymptotic expansion for the low-speed 
solution. Some general comments about the behaviour of the low-Froude-number 
solution are made next. 

Differentiation of (2 1) gives 

An integration by parts of (24) for 6 = x < - 1 yields 

Thus, to leading order = €7 = - c F ~ $ ,  has no high-frequency waves upstream in 
the linear theory and the free-surface height depends on the Froude number only as 
a scale factor. Equation (25) is entirely real for z = 0 upstream of the body, thus 4% 
% $, on the surface. These properties are also true for double-body flow. 

For 5 = x > - 1 consider the integral 

from (24). For 5 = x for 1x1 < 1, the integral I can be rewritten as 

The first integral in (27) is 

The second integral in (27) is 
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Thus, 

and Ex = qx = ef, = sdZ is an order-€ quantity along the body as is expected. For 
x >  1, 

The first integral in (31) is 

This gives 

(34) I - ~ , p n ) f e w 4 + 1 / ~ Z ) .  
x>l 

F t + O  

Thus, 
dominant term is a free wave of the form 

= ey = -fli q5% is order ( f lL )  behind the body. Downstream of the body, the 

co 

7 - -pL(2n)t C na,sin[(x- 1)/~:-4x:] 
FL+O n-1 
x>1 

with correction terms to this simple sine wave of order F i .  

(35) 

4. Simple example 
The linear and double-body sohtions for flow past a box with a triangular 

extension in front as shown in figure 2 is worked out next. a is chosen to be a = tan-l 
(1/1.6) to agree with experimental observations for the geometry of the triangular- 
shaped vortical flow region in front of the towed rectangular box. 

In  this example, 

(:&(l+x) for - 1  < x < -0.5 

f ( 4  = 
for -0.5 < x < 1. 

Substituting x = cos 8 for - x: < B < 0 gives 

16 FLM 246 
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-L* L' 

d* 

a = tan-'(1/1.6) 

FIGURE 2. Rectangular box with a triangular extension in front. 

c-plane 

A:D 
B C 

w-plane 

1 I I 
1 I I + 

u1 % u3 
w = o  

FIGURE 3. Schwarz-Christoffel mapping of a body in the [-plane onto the real axis in the 
w-plane. 

with a,=f =- f(0) sin no do. 
7~ -n 

The double-body solution can be worked out using a Schwarz-Christoffel 
transformation. Map the body in the [ = D + iz" plane onto the real axis in the w-plane 
(figure 3) so that the vertices of the body A,B,C,D are mapped onto the points 
w = O,ul, u2, u3 respectively. Then for d = J+i$ = w = u+iv, 

for 

and 

(w - Wa/n - dw 
dtj ( w - u ~ ) ~ ' ~ ( w - u ~ ) ~  
-- 

The points ul, u2 and u3 must be shown so that (41) is satisfied when cis  located at  
the vertices of the body B, C, D and w is located at  ul, u2, us, respectively. 

The free-surface solution, E = €7, for the linear problem and f [  = Fir", for the 
double-body problem are plotted in figure 4 where the distance, height and Froude 
number are scaled according to the draught of the body. The triangular bow is 
located at  x = - 1.6 in order to match with the experimental measurements 
presented in figure 6 (a-d). Note that the linear solution has a square-root singularity 
near the body's leading edge while the double-body solution is bounded. Upstream 
from just a few draught lengths out from the bow, the two solutions are remarkably 
similar. This is a somewhat surprising result since they arise from very different 
perturbation expansions and since the downstream solutions are very different. For 



Two-dimensional free-surface $ow past a body 445 

Distance 

FIGURE 4. Free-surface height for the linear theory (-----) and double-body (-) theory 
past a box with a triangular extension in front. 

- 10 -8 -6 -4 -2 0 
Distance 

FIGURE 5. Upstream double-body solution for a finite box (----) and a semi-infinite box (-) 
with the same triangular extension in front. 

reference the upstream double-body height for the finite box of figure 2 and a semi- 
infinite box with the same triangular extension in front are plotted in figure 5.  

5. Comparison with experimental results 
Measured wave heights are plotted in figure 6 ( a d )  for typical experimental runs 

along with the double-body solution for flow past a semi-infinite box with a 
triangular extension in front, for four values of Fd. Note that the vertical axis is 
greatly stretched relative to the horizontal axis. Wave heights are plotted for the 
rectangular box up to its bow at x = 0 while the double-body measurements extend 
upstream from the triangular extension at x approximately equal to - 1.4 to  - 1.6 

15-2 
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draught lengths. Notice that the free surface rises relatively smoothly from upstream 
and then forms a plateau above the vortical flow region between x = - 1.4 to - 1.6 
up to the bow of the rectangular box a t  x = 0. The potential flow separates away 
from the free surface near the beginning of the plateau region approximately where 
the free-surface slope becomes discontinuous. Unsteady waves emanate from the 
bow of the box. At the higher Froude numbers, these waves dissipate relatively 
quickly in the plateau region while the lower-Froude-number runs show these waves 
propagating upstream. The flow is turbulent off the body’s stern, which in effect 
extends the length of the body behind. Thus, the theoretical double-body solution 
past a semi-infinite body is compared to the experimental observations. Although 
the experimental flow structure is more complicated than the theoretical double- 
body flow, the two upstream solutions agree fairly well away from the region of 
strong viscous influence near the plateau. 

6. Conclusions 
This paper derives a simple asymptotic solution for the linear problem of low- 

Froude-number two-dimensional flow past a shallow-draught object. The free- 
surface height is of order d’: in front of the body but has free waves of order EFL 
behind the body. Upstream and away from the leading edge, $z 9 $z along the 
surface and the surface height depends on the Froude number to leading order only 
as a scale factor. This behaviour upstream but away from a body’s leading edge 
where viscous effects are expected to be important is the same as that of double-body 
flow. Thus, while it is generally accepted that double-body flow accurately models 
the upstream behaviour of low-Froude-number flow, we now see that the low- 
Froude-number limit of linear theory (based on a small-draught approximation) 
behaves in the same way as double-body flow (away from the body’s leading edge) 
yet the linear solution predicts waves downstream. The simple case of flow past a box 
with a triangular extension in front is worked out as an example. Experimental 
results of the upstream flow past a box are also presented. Although the experimental 
flow has a more complicated structure than the linear or double-body flow, the free 
surface is very similar to the theoretical flow past a semi-infinite box with a triangular 
extension in front from a few draught lengths out. 
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